Analog implementation of a Kohonen map with on-chip learning

نویسندگان

  • Damien Macq
  • Michel Verleysen
  • Paul G. A. Jespers
  • Jean-Didier Legat
چکیده

Kohonen maps are self-organizing neural networks that classify and quantify n-dimensional data into a one- or two-dimensional array of neurons. Most applications of Kohonen maps use simulations on conventional computers, eventually coupled to hardware accelerators or dedicated neural computers. The small number of different operations involved in the combined learning and classification process, however, makes the Kohonen model particularly suited to a dedicated VLSI implementation, taking full advantage of the parallelism and speed that can be obtained on the chip. A fully analog implementation of a one-dimensional Kohonen map, with on-chip learning and refreshment of on-chip analog synaptic weights, is proposed. The small number of transistors in each cell allows a high degree of parallelism in the operations, which greatly improves the computation speed compared to other implementations. The storage of analog synaptic weights, based on the principle of current copiers, is emphasized. It is shown that this technique can be used successfully for the realization of VLSI Kohonen maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VLSI Implementation of Fuzzy Adaptive Resonance and Learning Vector Quantization

We present a mixed-mode VLSI chip performing unsupervised clustering and classification, implementing models of Fuzzy Adaptive Resonance Theory (ART) and Learning Vector Quantization (LVQ), and extending to variants such as Kohonen Self-Organizing Maps (SOM). The parallel processor classifies analog vectorial data into a digital code in a single clock, and implements on-line learning of the ana...

متن کامل

A Spike Based Learning Neuron in Analog VLSI

Many popular learning rules are formulated in terms of continuous, analog inputs and outputs. Biological systems, however, use action potentials, which are digital-amplitude events that encode analog information in the inter-event interval. Action-potential representations are now being used to advantage in neuromorphic VLSI systems as well. We report on a simple learning rule, based on the Ric...

متن کامل

A Micropower Learning Vector Quantizer for Parallel Analog-to-digital Data Compression

An analog VLSI architecture for learning vector quantization (LVQ), with on-chip adaptation and dynamic storage of the analog templates, is presented. The architecture extends to Fuzzy ART and Kohonen self-organizing maps through digital programming. The analog memory and adaptive element of the LVQ cell comprise 6 MOS transistors and one capacitor, and provide for robust selfrefresh of the dyn...

متن کامل

A spike based learning neuron in analog

Many popular learning rules are formulated in terms of continuous, analog inputs and outputs. Biological systems, however, use action potentials, which are digital-amplitude events that encode analog information in the inter-event interval. Action-potential representations are now being used to advantage in neuromorphic VLSI systems as well. We report on a simple learning rule, based on the Ric...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 1993